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Abstract—Conventionally, normal modes (eigenfunctions) are labeled with regard to the mag-
nitudes of associated eigenfrequencies (eigenvalues). Linear mechanical structures governed by
second order ODE's possess a set of the oscillatory properties, two of which are: (i) all eigen-
frequencies g, 5 are distinct, and (it} the kth normal mode has exactly N, = k— 1 nodes. Hence,
under the conventional rule, s and N,s are in full agreement : both sets form strongly increasing
sequences.

[t is well known that the first oscillatory property faiis for linear mechanical structures governed
by fourth order ODEs: they may have repeated eigenfrequencies. However, it turns out that the
second oscillatory property also fails: several non-consecutive modes may have the same number
of nodes. Thus, in this case, the conventional rule may lead to the complete disagreement between
both sets: while g5 form an increasing (non-descending) sequence, a sequence of s may be
disordered. Therefore, (i) higher modes may have a smaller number of nodes than lower modes (in
particular, the fundamental mode may have many nodes, while any higher mode may even be
nodeless) and, (i) the normal mode responses, treated as functions of a rigidity (or inertia) parameter
of the structure, become discontinuous. The latter disadvantage directly relates to the problem of
modal truncation : small changes in mechanical properties of the structure may lead to significant
{even complete) changes in the modal respoases duc to the same excitation.

Al such spectral features are studied in the proposed paper with regard to regular continuous
beams with clastic intertor supports whose relative stiffness ts considered as a rigidity parameter.

1. INTRODUCTION

L1, The general spectral properties of finite-dimensional lincar mechanical structures with
distributed parameters are: (i) the eigenfrequencies (eigenvalues), g, are real, positive, and
form a denumerable infinite spectrum and (ii) the normal modes (cigenfunctions), ®,
comprise a complete set of orthonormal functions. Let (u, ®) be an eigenpair. Conven-
tionally, cigenpairs are labeled with regard to the magnitude of us: ® =, if
ME W 2 2 >y The essential feature of the normal mode @, is the number of
variations of sign in its components, or the number of nodes, N,, where the nodes are
defined by the following conditions

®(x) =0 } |
D(x—-0)P(x+0) <0}’ M

and x is a space coordinate. Structures, which are governed by second order sclf-adjoint
ordinary differential equations (ODEs) (strings, shafts, or, in general, Sturm-Liouville
systems), possess a set of the oscillatory properties (Courant and Hilbert, 1953 ; Gantmacher
and Krein, 1950 Gantmacher, 1960), two of which are the base for the following con-
sideration. They are: (i) all eigenfrequencies are distinct, and (i) the normal mode ®, has
exactly k—1 nodes i+

Ne=k-—1, k=1,2,... (2)

For Sturm-Liouville systems the conventional rule for mode numbering accords with the

tAs an example of other oscillatory properties, note that the nodes of two adjucent modes alternate
{Gantmacher and Krein, 1950 ; Gantmacher, 1960).
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Fig. 1. A regular beam with elastic intertor supports {RBES).

numbers of nodes: if we label cigenpairs with regard to the number of nodes, we obtain
the same sequence.

1.2, 1t s well known that the first oscillatory property fails for linear mechanical
structures, governed by fourth order ODEs (for example, beam-frame structures) : such
structures may have multiple eigenfrequencics. However, it turns out that the second
oscillatory property (2). also fails: several non-consecutive normal modes may have the
same number of nodes. The conventional rule for mode labeling may lead to the complete
disagreement between g s and Vs while gs form an increasing (non-decreasing) sequence,
the sequence of Vs is not ordered at all. Therefore higher modes may have smaller numbers
of nodes than lower modes (in particular, the fundamental mode may have many nodes,
while any higher mode may be nodeless) and the modal responses become discontinuous
functions of a rigidity {or tnertia) paramcter of the structure.

[.3. All these spectral Features are the subject of this paper. We shall study them with
regard to regular beams with clastic intenior supports (RBES), that is, multispan beams
with identical spans. We assume that the RBES are lincar, have uniformly distributed mass
and simply supported extreme ends, Frg. | Henee they possess a symmetry group €.

We introduce the following notation:

n is the number of spans,
Ef is the rigidity of the beam, £7 - const,,
! is the span length, 7 = const.,
L =nl s the total beam length,
W is the stiffness of the elustic support (foree per length),
" is the relative (dimensionless) stitfness of the elustic support, e (0, 4),
o=l EL (B

" is the beam muass per unit fength,
w, is the Ath natural frequency (rad's),
IR 1s the Ath cigentrequency,

e = (malltEDTY 4
@, is the Ath normal mode, normalized to max, O (v) = L0 < v € L.

Forced vibration of the RBES are described by :

(a) n fourth order PDEs

Sulean
o AR

(AN ot

cu(x. t) Culx, o)
T m -
ot

=p(x. 1), xel0./] (5)

where b is the viscous damping and p(x. 1) is the excitation force,
(b) the boundary conditions

+ Two-dimensional structures (for instance, membranes) may have repeated eigen{requencies even when they
are deseribed by sccond order ODEs, However it is apparent that they arc not included in a class of structures
under investigation because their normal modes have no nodal points but nodal lines. On the other hand., 2D and
3D lattices belong to the structures under consideration.
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¢*u(0, *u(L,t
u(0.1) = Z(Y ). u(L.t):-—l;%-:—z—_-

0, 6

(c) n— t compatability conditions (last two are moment and shear balance, respectively)

at the elastic support points C,. j = 1..... n—1
| cu cu
= U . —_— = —
“lc,—o C,+0 axlc o 2%lcso
¢Cu é*u ¢lu _ 3 . ¥ ul )
éx’ ¢;-0 Tyt ce0 éxtle oy 6xP|cwo EITOTP
and (d) the initial conditions
cu(x,0)
u(x,0) = ——=0. )]

Let the RBES be subjected to the excitation force of the form

plx, 1) = q(x) f(0), 9)

where ¢(x) is the force distribution and /(1) is the forcing time-function. One can present
the RBES displacements in the form given in Meirovitch (1967) and Biggs (1964) :

s

ulx,t) =Y ggwk(xm(:). xelo, L]. (10)

k-t

Here F (1) is the Ath dynamic load factor

Fi(t) = \/‘-’i“;-‘[l (@) € M9 sin (w /1= Bt =1)) dr, (11
[—f2do

f = b/2m is the critical damping, T, is the participation factor of the kth normal mode
‘l)k(,\')

= Qk/A/[kv (12)
Q. is the Ath modal force
L
O = j g(x)®, (x) dx, (13)
[}
and M, is the Ath modal mass
L
M, = mJ‘ ®F(x) dx. (14)
0

It is necessary to emphasize that the normal modes, ®,, are undamped modes (Meirovitch,
1967), since the boundary-value problem, which we obtain by separating space and time
variables, describes the undamped vibration, while the damping term is related to the initial-
value problem and is revealed in (11).

1.4. Apparently. the degree to which normal modes participate in the total response
depends on the force distribution ¢(x). the dynamic load factor F,(f), and the spectral
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properties of the system. Simplifying the problem to the invariant part of the response, we
assume that

g{x) =g =const. and F= max Fi (1) (15
(skew-svmmetric forces can be treated in a similar fashion). Then
q
rk=-r0_k. k = [.2.... (l6)
m

where Iy, is a dimensionless participation factor, which we call the unweighted participation
factor

L L
Coi = f ®.(x) dx/j ®i(x)dy, k=1.2,... (7
0 / 0
Thus
] gl
u('\‘ ’) - [k§| r",kq)k(x)j'F El M (18)

where [y, is the weighted participation factor
Cup = Toulpd. k=1.2,... (19)

We define the amphitudes, w(x), as root-mean-square values

MﬂsL?WwMﬂ{rrg, (20)

then
Woax = I]Fﬁg;, (21)

where

n=[§rh}f (22)
k= |

In the same manner the amplitudes of bending moments and shears are

%)
«

/2
M(x) = —[Z (szkm}f’(x))z] Fql?,

k o
x 02
V(ix) = —[ Y (r:.k‘bi”(-f))::l Fql, (23)

k-l

where
9 [2 ’ ) 1} el
B (x) = 5 D(x), OL(x) = B (x), k=12,...
Hi He

and

Cap = rO,k/I-‘lEv T = Cox/tte. k= 1.2,... (24)
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Fig. 2. Normal modes of a five-span RBES.

Clearly
M, =T.Fql*, V. =T Fgl (25)

and
0 b2 £ 12
= [Z r%,k] , = I:Z r%,k:] . (26)
kw | F 258 |

Thus, there are four participation factors, I',,, p = 0,1,2 and 4, and three total response
functions [,, p = 1,2,4. (Onecanadd 'y and 'y, = Fox/ui, associated with the angular
displacements.) We define the responses of the normal mode @, by

vox = [ToalTol p=0,12and4; k=12,... @7

They are the invariant parts of actual modal responses. As well as g, and ®,, y,, are
functions of  and n.

1.5. One-span beams possess a complete set of oscillatory properties. The spectral
properties of arbitrary multispan beams with rigid interior supports were studied by
Gantmacher and Krein (1950) and Gantmacher (1960), who have developed a strong
mathematical technique; namely, the theory of oscillatory matrices (for lumped-mass
systems) and the theory of oscillatory kernels of integral equations (for distributed-mass
systems). They have found that arbitrary multispan beams with rigid supports also possess
the oscillatory properties under the special modification of the rule for node counting. To
illustrate this modification, consider five lowest normal modes of a five-span regular beam
with rigid interior supports (RBRS), Fig. 2. Clearly, if we define nodes by (1), then N = 4,
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N:=5,Ny=6,N,=7and ¥; = 4. Gantmacher and Krein proposed to ignore the nodes
at those support points C,, where the normal modes change sign. and to count as nodes
those points C,, where modes have zero slope. According to this rule, ¥, =0, ¥, = 1.
N, =2 N,=3and N; = 4. [n the latter case we ignore points C, and C, but count C- and
C.:. (Note that in fact at the area of point C. (and point C';) there are two node points
located very near each other.)

With respect to / the RBES are located between a one-span beam (¢ = 0) and the
RBRS (i = o). Since both extreme cases possess the oscillatory properties. it would be
natural to expect that the RBES also have them. However, this is not true. in particular,
because the modified rule cannot be applied to the RBES: if ¢ < 10*, displacements of the
elastic support points C, are not ignorable.

1.6. We shall study the spectral properties of the RBES and the RBES modal response
functions. In the next section we construct decoupled frequency equations of the RBES and
study the distribution of their roots. These equations allow us to introduce a special non-
conventional rule for eigenpairs labeling. In Section 3 we investigate the RBES spectral
propertics using both conventional and non-conventional sequences of eigenpairs. Modal
response functions are analyzed in Section 4 and a final discussion is presented in Section
5.

2. FREQUENCY EQUATION OF THI RBES

2.1. To solve the boundary-value problem for the RBES one would usually use one of
two classical methods of structural dynamics : the dynamic flexibility method or the dynamic
stiffness method. However, being applied to the RBES, they lead to systems of cquations
which cannot be diagonalized or block diagonalized explicitly. Therefore, we use the mixed
method and apply two mixed unknown amplitudes, namely, the bending moment A/, and
the displacement —w;, at cach elastic support point C,, j=1,...,n~1. (Mixed pairs
(M,.w,) lcad to nonsymmetric systems of cquations.) The vector of unknowns Y. is of
order 2(n—1) and contains # — | seccond order subvectors

XL=(X1 x5 X =M o)

Subscript “x" stands for block vectors and block matrices. The corresponding system of
linear equations is homogencous and symmetric

Ap)Xe =0

The matrix A4, (u) is symmetric tri-block diagonal finite Toeplitz matrix (i.e. A, = A, where
c=li—jlihj=1.....n=1):

Ao(p) A (u)
A A A
AL(pt) = A Aty A () (28)

Ay ()

with blocks

! [
E[ Xy [()“
Ag(p) =2 1 El . (29
(s v (Tu - %l/l)

[’
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Table 1. Beam functions z,, 8,.4,.¢,. 7, and n,
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and

Ai(p) = (30)

- [“:1: {1 ,Iu

Elements of the first row of Au(p) are the angular displacements, #,, at points C,,
=1, n—1, induced by M, = | and w, = — [, respectively. Elements of its sccond row
are the reaction forees R,, at C,, induced by the same sources. Elements of blocks A4, (u)
are the angular displacements and the reaction forces at points C,_, and €, ,, induced by
M, =1 and w; = — 1. Functions «,. f§,, d,. &, 7, and y, are mcromorphic hyperbola-
trigonometric functions of g given in Table 1.

2.2, In accordance with Dinkevich (1986), matrix A,(u) has the following explicit
block diugonal decomposition

Ae() = Ub Au() U, (31
Here A (p) is block diagonal

A(p)

Auln) = : (32)

with 2 x 2 blocks

! |
E(a“—kﬂ,, cos 0,) I ?(6,,~—e,, cos 0,)
Au) = Ay +24 () cos 0, =2 I
7((5,‘ —&, cos ) l i (7, +n, cos ;=)

(33)
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O, =infn, i=12..... n-—1, (34
Matrix Uy ts symmetric, orthonormal and independent of p
2
Uy = ,,[13 sin ifm/a)l; . Uyt = U, (35)
£y 05 a 2% 2 unit matrix. Thus, the RBES frequency equation
det Ay () =0 (30)
reduces to 7~ 1 uncoupled equations.
det A () = (2, + f, cos 0)(y, +n, cos 0, — §n}7)—-(<5,, —r, cos 0,)° =0,
i=12....n—1. (3N

Introducing here the expressions for x,,....n, (Table 1), onc can write the frequency
equations in the form

sinh p sin u 4y’ L .
. — e = o= gnin, =120 ,n—1 {38)
cosh p—cos 0, cos p—cos fl,

These cquations were obtained by Leites (1974), who applied a finite-difference technique
for their derivation.

2.3, Denote by £, (1) and Gg{g) the left and the right sides of (38), respectively.
These functions are plotted in Fig. 3. Similar to tan g, each function F, (s) has a de-
numerable infinite number of segments divided by poles. The function G;(p0) is a cubic
parabola of g scaled down by a factor of 1/ff. The points, where G;(3) intersects Fow, (o),
determine the roots of the ith frequency equation (38): 1P’ () < ' (J) < .... We observe
from Fig. 3 that parabola Gg{u) crosses the first segment of all curves F,. ().
i=1,....n—1, before it will meet the sccond segment of any F.u (). This permits
one to group all roots of all frequency eqns (38) into a denumerable infinite number
of scts so that the pth sct would contain only the pth root of cach eqn (38):
WU ), p= 20 They are known as zones of the natural
Jrequency condensation.

2.4, However, these zones are incomplete because the roots of (38) do not span the
entire spectrum of the RBES. [n fact, the original frequency equation (36) determines only
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those eigenfrequencies which correspond to nontrivial vectors X,. We call them the
explicit eigenfrequencies, Dinkevich (1977). The RBES also have such normal modes where
M, = w; = 0 at all elastic support points C;, j = 1,2,...,n~—1. They correspond to trivial
vectors X, = 0. According to these modes each span vibrates as an independent simply
supported beam with one, two, etc., half-waves, Fig. 2. mode ®,. The associated eigen-
frequencies are 7, 2n. .. .. We call them the implicit eigenfrequencies, since eqns (38) do not
*see” them. It should be natural to insert u = = into the first zone of condensation, ¢ = 2x
into the second zone and so on. Thus, the complete zones contain » eigenfrequencies each.
and this is true for any multispan beam. In our case one eigenfrequency is implicit, while
all others of the same zone are explicit.

2.5. Further examination of Fig. 3 reveals the existence of the points at which curves
Feosn (). i = 1,... ,n—1, intersect each other. Since Gz{(;t) may run through any of those
points, there exists such values of , which imply multiple eigenfrequencies.

2.6. Setting ¥ — oc, we obtain the frequency equations of the RBRS

sinh g sin g
cosh g—cos 6, cos u—cos 8,

0, 0, =in/n, i=1,....n 39

The roots of (39) are the points in which curves F,,(u) intersect the horizontal axis u.
Clearly, they are distinct. Spectral properties of the RBRS were studied in Dinkevich (1974).

2.7. Having obtained p®, i = 1,2...., we find the associated normal modes. In accor-
dance with (31)-(35), the modal valucs of M and w!? at each elastic support point C,.
j=1,...,n—1, may be presented in the following form:

l 2 . in
i = - - s iy . 3 (i} § = in = -
M) !\/n[‘(‘u ) —e(u'?) cos n]sm .

£l in . yn
W) = \/;; [7(#“’)+n(u"’) cos - — étﬁ] sin -

Using them as boundary conditions, one can find the modal displacement
Wi (&) = C, sin u?¢+C, cos u?é+ C, sinh p"¢+ C, cosh p'7¢ 41

at any specified point § € [0, 1] along the jth span, j = 1,..., n. The total set of w'?(¢) forms
the explicit normal mode @, i < n, which we normalize to max,¢ ., ®"(x) = 1. Clearly,
the sequence of eigenpairs (u™, ®"), i = 1,2,..., is unconventional since 4’ may be larger
than u"* ". [t will be called the physical (or natural) sequence of eigenpairs.

We will study the properties of both sequences, physical and conventional (., ®,),
k=1,2,..., and with no loss in generality this consideration is limited to the first zone of
frequency condensation (I € i,k € n).

3. SPECTRAL FEATURES OF THE RBES

3.1. For any fixed n, explicit 4'®(¥). i < n, are monotone continuous functions growing
from the eigenfrequencies of a simply supported beam, u?(0) = in/n (not ir, since u (4) is

SAS 23:9-H
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Fig. 4. Functions g (), n = 4,

written with regard to a span length [ = L/n), to their asymptotic values y*(20), associated
with the RBRS. They are shown in Fig. 4 for n = 4.

Theorem 1. There are n, = n(n—1)/2 valucs of i, namely, 'j’-. LW>i=1,..., n—1,
such that

u (W, =0) < (P, ~0)
.“(”('pu',) = .“UI)('EH,) . (42)
ﬂm('pu, +0) > #(‘v')('pn', +0)

They are determined by the formula

(cos y,,, —cos 0;)(cosh u,; —cos8,)

‘prt] (43)

=4 l;‘ T T ,
i ginh fu,(cOs ,, —cos 8;) —sin y;, (cosh y,; —cos b))
where y, is the first root of the equation

sinh u 3 sinpu
(cosh p—cos 8;)(cosh p—cos 8,) " (cos u—cos 0,)(cos u—cos 6; )’

O, =in/n, ii>i=1,...,n—1 (44)

Proof. Equation (44) follows from (38). if we subtract one eqn (38) from another ; eqn
(43) is the other form of (38) with y, substituted for p. O

We will call uﬁ,,-l the double frequency points. As follows from Table 2, in higher zones

double frequency points become very close to each other permitting us to treat them as one
m-fold frequency point. Introduce

T = 'ﬁlz and g = 'ﬁn— L (45)

and subdivide the entire y-domain [0, c0), into three subdomains



If ¥ belongs to subdomain 1, u”(if) are distinct and form an increasing sequence

Linear structures governed by 4th order ODEs

Table 2. Double Frequency Points §f, . n =4

vii
20NE . 1
OF "
CONOENSATION n=4
1, 2i, 3,
2 87.20
1 3| 1896 11878
4] 11690| 12449 13208
2 | 99381
2 3 | oo680| 100153
4 | 998.04] 1003.12 | 1008.16
2 3475
3 3 | 3348.1 | 33485
4 | 33483 | 33487 | 3349.1

(0.6, 7, ¥51, (95, ).

KW < @) <<y =m.

1087

(46)

(47

When §f cxceeds §§ (subdomain 3), u® () are also distinct but form a decreasing sequence

) > W) > > " =

(43)

In subdomain 2 any two eigenfrequencies u®(§), i = 1,...,n, may be equal and their

sequence

33
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is not ordered, Fig. 5a.
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Apparently 5 and ¥ vary with n:

n T
COS ft) 3y —~CO3 cosh ey, —cos
n n

by = 4, : . (49)
. n . n
sinh g, z(cos 2 =—Cos )—-sm ‘[l“(COSh [t —Cos >
n n
where geq, is the first root of
o sinhp sin gt
T 2n T |
cosh p—cos cosh g —cos COS it — COs COS ft —Cos
n n n n
Clearly, , ., = " = n, hence (Leites, 1974),
7 /
g (n) = 4n’<cosh n+cos >/ sinh . (50)
ny

Thus, () = 0, ¥$(w) = 135.2, Table 3.
3.2. As mentioned above, the RBES possess a symmetry group C,, hence their normal
modes arc cither symmetric or skew-symmetric. At = 0 the explicit mode ®Y(0), i < n,

Table 3. Critical double frequency points (1) and ¢4 (n)

n 2 3 4 S 6 7 8 9 10 15 20 oo

VS | 1245{1065| 87.3] 727 er9| s53.7] 474 23] 382| 257 193] o

e | 124.5[129.9 {132.1 [ 133.2] 133.8 | 134.2| 134.4| 134.6| 134.7| 135.0| 135.1] 135.2
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is sinusoidal with i— ! half-waves. When ¢ runs through the entire domain [0, =), each
explicit mode @' () is deformed (Fig. 6) due to the restoring reaction forces

Er
RO = ) = 3 B0 ] =1t o

which are applied at each elastic support point C, and act in the direction of the original
straight axis of the beam. Being directly proportional to modal displacements (at points
C). R\() are either symmetric (i = 1.3,5,...) or skew-symmetric (i = 2.4.6....). This
leads to:

Theorem 2. (i) The explicit normal modes @ (), i < n, preserve their initial symmetry
(associated with ¢ = 0) in the entire domain.

(i) The implicit mode ®" is sinusoidal with n—1 half-waves, the eigenpair
('™ = n, ') does not depend on /.

Until § < ¢¢ all w{?(f) remain large, hence the initial number of nodes. N*(0). also
remains unchanged. When § > ¢/, in fact § » J/¥, the magnitudes of w!? () become small,
and additional nodes may appear with further increase of .

There are two kinds of mechanisms forming new nodes. The first one is general and
may be revealed in any span except the middle. Symmetric and skew-symmetric modes may
display this mechanism repeatedly. Suppose that at the neighborhood of point C; there is
a point, say, C,+ Ax. whose amplitude is smaller than w!’ (). Then zero displacement will
be achieved first at this point so that any additional increase in ¢ will replace the “*node™
(in fact, the point with zcro slope) at C;+Ax with two new nodes on each side in the
neighborhood of this point. One of them will eventually move to C, as f continucs to grow.
Because of the RBES symmetry. this mechanism works simultancously in two conjugate
(symmetrically located) spans. Morcover, it may take place simultancously in scveral pairs
of conjugate spans, hence

NOW+AY) = Ny +4p, p=1,2,3,... (52)

For example, forn = 12, N'V(2410) = 2but N@(2411) = 14,i.e. p = 3and N (4225) =3
but N'"(4226) = 19, i.c. p = 4. Another mechanism acts (and only once) in the middle span
(1 is odd) of skew-symmetric modes @2 (), i = 2.4,.... In this case the restoring forces
at both ends of the middle span have the same magnitude but opposite signs. Therefore, as
i increases, two new nodes appear simultaneously in this span on the opposite sides of the
initial node point at x = L/2, see Figs 6b and 6d, thus,

NG +A) = NO(f) +2. (53)

This mechanism, if it occurs, always preceeds the first one.

Summarizing this observation, we note (see Table 4) that (i) if n is odd, all explicit
modes obtain additional nodes due to their deformation with i increase, while if n is even,
some modes deform with no change in the number of nodes; (ii) as a rule, the normal
modes acquire their maximum number of nodes, N**(c0), when § < 10*; (iii) several non-
consecutive modes may have the same number of nodes ; and (iv) the sequence of N(f),
i=1,..., n is not ordered in subdomain 3.

3.3. To analyze the conventional eigenpairs (g, ®,), k = 1,....n, we return to Figs 4
and S. Clearly, the fundamental eigenfrequency, u, (), is presented in Fig. Sb by the lowest
enveloped curve A yA4:34,,, the first overtone, u (), by the second enveloped curve
Aad 3 A Ay Ay and so on. Therefore, if §f € [0, ).

m@) =u"W) <) =uPWP) < <p,=u" =n (54)

and
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(e)

Fig. 6c. Mode @), n = 5.

) v =0t

z
- &

FTY
}

Nl‘l s
Fig. 6d. Mode ®'(f), n = $.
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Table 4. Number of nodes .V"'() of physical modes ®'()

NUMBER | MODE NT)
OF A
SPANS T=0 | T-103| 7104 | G105 | 710

1 0 0 4 s 8
2 1 3 7 n "
3 2 6 10 10 10
. 3 5 3 13 13
5 N [ 12 12 12

1 8 5 7 n 11 n
7 6 10 10 10 10
) 7 9 13 13 12
9 8 8 12 12 12
10 3 1 n " 1"
1" 10 10 10 10 10
1 0 ) 4 8 8
2 1 1 9 9 9
3 2 2 14 14 14
. 3 3 19 19 19
5 4 -} 12 12 12

. 6 5 5 5 5 )
7 8 10 14 14 14
8 7 15 15 15 15
9 8 8 8 ) 8
10 9 9 9 9 9
n 10 10 10 10 10
12 11 1 n m 1

—
O () = OO, N = N =k—1, k=1, . (55)
Fhus, in subdomain | the RBES possess the oscillatory properties.

It e [ p5], then

) = 1)
B, () = D) for i, << ... i=2....n—1 (56)
Ny = N0 = i—1

Hencee, as o increases, the fundamental mode., @, (). consequently coincides with @2 (i),
GG, L b ), and theretore

I S N () €n=2. (57)

When f passes through corresponding double frequency points oy, -« a1 NV ()
instantancously increases by one.

The eigenfrequency g, () is presented in Fig. 5b by the Ath (from the bottom to the
top)curve Ay oAk - An e Hence the normal mode &, () consequently coincides
with % (f). @'V 0f). @V (f), O3 (), @* (i), ete. Corresponding double frequency
points are determined by i, —/ = k-1 or k, and

l—k, ifi,—i=k—1

Ne(, +0) = Nk(uﬁ,,,—O)+{k_ iFi—i =k (58)

Thus, as  grows. V() periodically decreases and increases, and some integers will occur
twice. if k € E((n+1);2). where E(x) is the greatest integer of x, Table 5. It becomes
apparent that in subdomain 2 the fundamental mode has at least one node, while any higher
mode may have even zero nodes. Hence in subdomain 2 the RBES have no oscillatory
propertics.
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Tabte 5. Number of nodes N, (¥) of conventional modes ®, (), subdomains 1 and 2

NORMAL _

Mook M (91, VSV 40

o 19

1 0 1 2 3 4 5 L] 7 8 9
2 1({0{2{1({3|2|4|/3|5/a]/6|5]7/6/8/7|9|8
3 2{0|3{v]|4l2|5|3|6|a}7(5|8;6{9|7

4 3{ofe|1]5/2|6/3/7/4[8|5]|9(s6

5 4|0}5/1]6[2]7{3|8|4|9|5

€ slojei117(/2]8]3[9l4

7 s|ol7|V|8[2{9]|3

8 7/o0l8l1]9]2

9 8)10}9)1

10 810

Whenever § > /<. all i, (if) are distinct again. but both sequences u () and u*' ().
k = l.....nare arranged in an opposite order, Fig. 4:

o= 1" = <) = 0" W) < <) = 1) (59)
Theretore,

D) = DR, Ny = NHURG). k=1 (60)
In subdomain 3 the normal modes do not possess the oscillatory propertics, since in this

subdomain the sequence of N (i) is not ordered. Thus we reach the following results :

Theorem 3. (1) The fundamental mode @, (), may have any number of nodes up to
n—1.t When increasing f passes through the corresponding double frequency points
$iaan ..., |, its number of nodes increases by one, changing the modc’s symmetry.

(i) Each higher mode, @, (), & = 2,...,n, may have any number of nodes from zero
upton—1.

(itf) Several non-consecutive normal modes may have the same number of nodes.

Theorem 4. For each fixed number of spans n, ¥ (49) and ¢ (50) divide the entire
domain [0, %) into three subdomains {0, ), [, %], and (J¥, 20) so that the RBES (i)
possess the oscillatory propertics in subdomain 1, (ii) have no such propertics in subdomain
2, and (ii1) have distinct eigenfrequencies in subdomain 3.

3.4. The eigenfrequency g, (4, n) can be easily found graphically. Present (. n) in
the form

w(f.n) = puglcos 0). 0, =in/n, i=1,....n 6N

They are shown in Fig. 7 for the first zone of frequency condensation, i < n. Suppose we
are interested in a particular g, (, n) for given n and . Then, if § < J (Table 3), one
should compute cos 0, and use Fig. 7. If § > §, it is necessary to compute cos 0, , ,_;.
When ¢ belongs to subdomain 2. one should find all n values pz(cos 6,), i = 1,...,n, and
choose the kth.

t The analogous fact is well known in the theory of clastic stability (Timoshenko, 1936) : a simply supported
rectangular plate, uniformly compressed along the short sides, may have onc, two, etc., half-waves in the critical
state {the fundamental mode). depending on the ratio of its sides.

SAS 25:9-1
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Fig. 7. Functions j'" (g, m), first zone of lrequency condensation.

It follows from Fig. 7 that in subdomain | j(f)|cown-1 < i (F, 1) < . while in sub-
domain 3, 7 < i, (f, ) < 4.73, where g = 4.73 is the fundamental eigenfrequency of a one-
span beam with fixed ends. In subdomain 2, (1§, n) =~ u,(4f). [n general, with n increasing
the RBES cigenfrequencies decrease.

4. MODAL RESPONSE FUNCTIONS OF THE RBES

4.1. The modal response functions, 7, (27). are assoctated with the conventional
normal modes, ®,(f). We call them the conventional modal response functions. As in
Scction 3, we begin with physical modes, ®(3}), and introduce the corresponding physical
modal response functions

w0 = [CYT, p=0,1240i=1,...,n (62)
where
O =)y, p=01.2400i=1.....n (63)

Duc to a given excitation and # fixed, functions 74() are continuous in the entire domain,
Fig. 8. Hence the RBES total response functions, r,(0), p=1.2.4,¢eqns (22) and (26), arc
also continuous. They monotonically decrease to their asymptotic values, I, ().

Observation of Fig. 8 shows that (i) the unweighted participation factor I'y’, cannot
describe three different modal contributions (in w,,.. in M, and in V), morcover, it
does not estimate either one. and (ii) a common statement that “‘the contribution of the
same mode increases from displacement to moment to shear™ is incorrect.

Inspection of Fig. § also reveals the existence of an additional critical point. 5. such
that
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-————---

1 - )
108 107
v
Fig. 8. Functions y{(§). n = 4.
PP =y (0)] <€, £>0—small, i=1,...,n (64)
Since Y/ is the same for all modes.
IC, W) =T () <. & >0—small, p=0.124. (65)

Regardless of n, it was found that [,(10%)/T,(0) < 1.028, I,(10%)/T,(00) < 1.021, and
[, (10%)/T,(o0) < 1.015. Hence J§ ~ 10*. Note also that max, (4, (10*)/14,(20)) = 0.991 and
max, , w'?(10%) < 0.025. Usually, but not always, N(10*) = N'?(ac), Table 4. With respect
to n, I',s increase in subdomain 1 (if ¥ =0, [, = (4/n"*')n’) and decrease in subdomain
3. Hence in subdomain | the RBES behave as one-span beams, while if § > J they are
similar to the RBRS.

4.2. In contrast with y$*({f), functions y, () are continuous only in subdomains 1 and
3. They have discontinuities at double frequency points. To prove this, let us consider two
physical eigenpairs (4", ®?) and (u“’,®"’) in the neighborhood of point ,, , Fig. 9.
Suppose that at § =, —0, u and p“" are the kth and the k,th conventional eigen-
frequencies, respectively, and k), > k:

ym('pti, —0) = e < #k, = ﬂ("”('pn, —0)'
Then, when ¢ passes through ,,,, they exchange their locations in the spectrum

HOW, +0) = we, > pe = w2y, +0).
Hence
O (i, —0) = Y, —0), &, (Jy, —0) = D), —0)
and

d’k(‘pﬂ, +0) = (D”')(lpn, +0), (Dk,('pii. +0) = (D")(lf,.,' +0).

Thus in the neighborhood of |ﬁ,,| the conventional modal response functions y,,(¥) and
yp,k,('p) are
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(c)

(66)
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Fig. 9. Discontinuity of modal response functions y, () and )'r»k.('ﬁ)-
] () 'S
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W) =94 ooore Yex, (W) = - .k >k
! el (/2 B . it >,

Since 71" () and 75" () are not equal at any point § € [, §/¥], Fig. 8, the double frequency
point . is a discontinuity point of y,,(1F) and 7,4 (). Hence small changes in § may lead
to significant (cven total, if y? or y5 equal to zcro) changes in the modal responses due to
the same excitation, Fig. 10.

(a)

Yaa

104 108 108 107

Fig. 10a. Functions 7, (§). n = 4.
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Fig. 10b. Functions y,,(f). n = 4, subdomains 1 and 2.

4.3. Present the above results as following theorems :

Theorem 5. The physical modal responsc functions, ¥ (). p = 1,2,4,i=1,...,n, arc
continuous in the entirc domain [0, 0). If for a given ¢ the physical mode ®“(§),
i=1,...,n,is excited, it will be excited in the entire domain due to the same excitation.

Theorem 6. Each conventional modal response function, y,.(§), p=1,2.4,
k =1,...,n, has n— | discontinuity points. They belong to subdomain 2 and coincide with
double frequency points §, i, > i = 1,...,n— 1. Small changes in { may lead to significant
(even complete) changes in the responses of the conventional modes ®, () due to the same
excitation.

5. DISCUSSION

5.1. The class of linear mechanical structures S() that have no oscillatory properties
is not limited by the RBES, which were chosen as the object of the above analysis only to
simplify the effort of constructing an unconventional (physical) sequence of eigenpairs. The
physical eigenfrequencies u'" () and u'? () corresponding to irregular symmetric three-
and four-span beams with elastic intcrior supports are shown in Fig. 11. One can see that
in the first case (three-span beam, Fig. 1 1a) both curves intersect twice, in the second (four-
span beam, Fig. 11b)—three times. Hence as § grows the conventional modes ®,() and
®,(f) change their symmetry several times and the corresponding modal response functions,
Ypa(§) and 3, ,(). p = 1,2, 3,4, have several discontinuity points.

5.2. In accordance with variational principles, some eigenfrequencies of an arbitrary
linear mechanical structure S(J) increase as a rigidity parameter ¢ increases (explicit
#(§)), while others remain unchanged (implicit eigenfrequencies). This is true regardless
of the order of ODEs, which describe free vibration of structures S(f). With respect to the
RBES the rate of 4"’() growth can be found from (38):
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Fig. {1a. Functions g "(f) and x'?(f) for an irregular symmetric three-span beam.
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€}

Fig. 11b. Functions ") and u'?(§) for an irregular symmetric four-span beam.

d#[ﬂ

dy

4 | 2 IZ“W I ~cos u'”? cos 6, cosh u?cos ), — | ]
= Y (cosu®—cosB)? ' (coshu” —cosf,)’ |

0, =in/n, i=1,....,n=1. (67)

Hence for any § < @
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(1) (94} d {m
d:w_ >d:.£ 5> dLJ -0 (68)

As § increases all du'®/dyJ/ decrease monotonically and almost equidistantly. Thus, each
pair of the RBES eigenfrequencies intersects only once. In general, physical eigenfrequencies
of S.(J). that is. of S(¢) governed by fourth order ODEs, may intersect each other several
times. and (68) is a sufficient condition for the existence of multiple eigenfrequencies. As
an example of S,(J) structures, consider longitudinal vibration of regular beams with elastic
springs between spans. Corresponding decoupled frequency equations are:

p(cos picos 0)+ 4 sinu=0, 0, =in/n, i=1,....n—1 (69)

where = (mw l*/EA)'°, A is the cross-sectional area, and other quantities are the same
as in (4). Thus

du® | sin )
— = - - , , i=1,...,n=1. 70
dy 2(H+ W) cos u™ —u™ sin 4'” +cos 6, : " (70)
and for any finite
du'®  dp? dut" "
Dl e A ol 71
dy < dy <s d (7

This is true for any S,(§), in fact, eqn (71) is the necessary and sufficient condition for the
existence of distinet ecigenfrequencies.

Inequalities (71) and (68) express the principal difference between spectral properties
of S,(f) and S,(§). It follows from (71) that structures S,(f) always possess the oscillatory
properties, while (68) leads to the conclusion that the existence of the oscillatory properties
of structures S,(¢) should be treated as the exception rather than the rule. Thus a common
association of higher modes of mechanical structures with higher number of nodes, which
is true for $5(f). is incorrect in general.

5.3. Apparently, there is no better rule for eigenpair labeling than the conventional
one, but it leads to discontinuities of the modal response functions y,, (f) and directly
affects the problem of modal truncation, a concept of great value in the modal analysis. In
some cases the modal truncation is based on a specified magnitude of the natural frequency :
all normal modes whose frequencies do not exceed this value are preserved. Discontinuities
of -,',,.k(nﬁ) do not affect the results in these cases. However, quite often we have no such
criterion. Therefore we usually limit the modal analysis to the first m normal modes choosing
m from the previous experience, In accordance with Theorem 6 this may lead to serious
(sometimes critical) errors and special precautions are required.

If the excitation of S,() is given by p(x, 1) = ¢(x) f (1), eqn (9), the following procedure
may be recommended :

(1) apply ¢(x) statically and compute displacements w(x) and moments M (x),
(i1} find the Rayleigh quotient

L L
Wi = j g(x)w(x) dx/ j m(e)w(x) dx (72)
0 0

or the Grammel quotient which is less conservative
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.t ] EM(x)
wg = JO m(x)nw-(x) dx”;’J:) E[‘((g)g dx. (73)

(iii) include in the modal superposition all normal modes whose frequencies do not
exceed wg or wg < wWg.
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